PVMT 2022: Middle School Division Algebra/Number Theory Round

Problem 1

Find the number of positive integers less than or equal 100 that are divisible by neither 2 nor 5.

Solution

From 1 through 100 there are 50 multiples of 2, 20 multiples of 5, and 10 multiples of 2 and 5. So the answer is simply $100 - 50 - 20 + 10 = 40$.

Proposed by Andrew Yuan

Problem 2

How many digits are in the number $8^5 \times 5^{10}$?

Solution

We rewrite 8^5 as 2^{15} . Our product now simplifies to $10^{10} * 2^5$. This number is equal to 3.2×10^{11} , so it has $\boxed{12}$ digits.

Proposed by Orion Foo

Problem 3

In the land of Kemgod, Franklin can use each dollar to buy either 5 grams of chemical *A* or 6 grams of chemical *B*. Let a number *n* be *purchasable* if Franklin can spend some amount of money to buy *n* total grams of chemicals. If Franklin has infinite money, what is the largest number that is not *purchasable*?

Solution

This follows from the postage-stamp theorem, which states that the largest number that is not purchasable is equal to $5 \times 6 - 5 - 6 = |19|$.

Proposed by Satvik Lolla

Problem 4

Consider the polynomial $f(x) = x^2 + 4x - 12$. Find the absolute value of the sum of all *x* such that $f(f(x)) = 0$.

Solution

Completing the square gives $f(x) = (x+2)^2 - 16$. $f(f(x))$ can then be written as $((x+2)^2 (16+2)^2 - 16$. Setting this equal to 0, we have the following:

$$
((x+2)2 - 16 + 2)2 - 16 = 0
$$

$$
(x+2)2 - 14 = \pm 4
$$

This gives two equations: $(x+2)^2 = 18$ and $(x+2)^2 = 10$. The sum of the roots each equation is -4 , so the answer is 8

Proposed by Satvik Lolla

Problem 5

The polynomial $x^5 - ax^3 - bx^2 + cx + d$ has five distinct roots. Four of these roots are −7,−4,−3, and 9. Find the value of *d*.

Solution

We can use Vieta's. Note that the coefficient of x^4 is 0, so the last root, *r*, must satisfy the equation $9-7-4-3+r=0 \implies r=5$.

Since *d* is the negative product of the roots:

$$
d = 3780.
$$

Proposed by Orion Foo

Problem 6

Neel has a third-degree polynomial, *P*. He then found $P(x)$, $P(x+1)$, $P(x+2)$, $P(x+3)$, $P(x+2)$ 4) for some fixed *x*. However, he then realizes that he forgot $P(x+3)$. Suppose that $P(x) =$ 17, $P(x+1) = 44$, $P(x+2) = 50$, $P(x+4) = 5$. If $P(x+3)$ can be written as $\frac{m}{n}$ for positive integers m, n , find $m+n$.

Solution

We can use finite difference. Note that the third difference is constant, so let that be *d*; then, we can use finite differences to compute that $P(x+3) = 50 + (-15+d) = 5 - (-36+3d)$. From this we can compute $d = \frac{3}{2}$ $\frac{3}{2}$ and $P(x+3) = \frac{73}{2}$, so our final answer is $\boxed{75}$.

Proposed by Sumedh Vangara

Problem 7

Suppose that for positive reals *x* and *y*: $x + y = 10$. If the minimum value of $(1 + \frac{1}{x})(1 + \frac{1}{y})$ can be written as $\frac{m}{n}$ where $gcd(m, n) = 1$, find $m + n$.

Solution

Expanding $(1 + \frac{1}{x})(1 + \frac{1}{y})$, we get $1 + \frac{x+y}{xy} + \frac{1}{xy}$.

We may use the AM-GM inequality,

$$
\frac{x+y}{2} \ge \sqrt{xy}
$$

 $25 > xy$

Plugging these values back into our original expression,

$$
1 + \frac{10}{25} + \frac{1}{25} = \frac{36}{25}
$$

So our final answer is $\boxed{61}$.

Proposed by Orion Foo

Problem 8

Find the smallest positive integer n such that $n^4 - 8n^3 + 24n^2 - 32n + 665$ is a perfect square.

Solution

Notice that the expression can be rewritten as

$$
(n-2)^4+649
$$

through the binomial theorem. Setting this equal to some k^2

$$
(n-2)^4 + 649 = k^2
$$

\n
$$
649 = k^2 - [(n-2)^2]^2
$$

\n
$$
649 = (k + (n-2)^2)(k - (n-2)^2)
$$

We know that both of the terms on the right are integers that multiply to 649 and have a difference of twice some perfect square. Considering the factors 1 and 649, their difference is 2×18^2 , so n-2 is 18, or $n = 20$.

You could also consider other factorizations of 649 and with negative terms, but they produce no new solutions.

Proposed by Milo Stammers

Problem 9

Define

.

$$
f(a,b,c) = lcm(gcd(a,b), lcm(a,c), bc)
$$

Given that prime factorization $f(2022,9009,7)$ can be written as $p_1^{e_1} \tildot p_1^{e_k}$, find $p_1e_1 + \ldots + p_k$ $p_k e_k$.

Solution

Given that some prime p goes into a, x times, b, y times, and c, z times. The power of p in f(a,b,c) would be

$$
\max(\min(x, y), \max(x, z), y + z)
$$

Notice that if $x>y+z$, the result is x, otherwise the answer is $y+z$.

We are trying to find

$$
f(2*3*337,3^2*7*11*13,7)
$$

Using our rules above, our answer would be $2*3²*7²*11*13*337$. Thus the final answer is $2+6+14+11+13+337 = 383$.

Proposed by Milo Stammers

Problem 10

How many ordered septuples (a,b,c,d,e,f,g) of nonnegative integers satisfy $a^4 + b^4 + c^4 +$ $d^4 + e^4 + f^4 + 7 = 40^g$?

Solution

If $g \ge 2$, take the equation mod 16; we have $16|40^g$ so $a^4 + b^4 + c^4 + d^4 + e^4 + f^4 \equiv 9$ (mod 16). But note that fourth powers are either 0 or 1 mod 16, so this is impossible. Thur our only solutions are when $g = 0, 1$. Clearly we can't have $g = 0$ since the LHS is at least 7. Thus, we must have $g = 1$, in which case (a, b, c, d, e, f) must be some permutation of $(2,2,1,0,0,0)$. There are $\frac{6!}{2!3!} = 60$ such permutations.

Proposed by Andrew Yuan